

Design principles

Source control & flow controls

Case study methodology

- Flood resistance analysis
 - Measured depth of rainfall that caused flooding or overdischarge.
- Flood resilience analysis
 - Scaled rainfall hyetographs to cause the sewer systems to flood.
 - Measured total flood volume and number of nodes that flooded for each scenario

Case study methodology

- Four case study scenarios:
 - Base case No additional flow controls were installed into the sewer system;
 - 2) In-sewer Only installing larger insewer flow controls into the sewer system;
 - 3) Plot-based Installing individual plot-based flow controls on each dwelling in the catchment; and
 - 4) Combination Installing a combination of plot-based flow controls and the larger in-sewer flow controls.

Dwelling flow controls:

Sewer flow controls:

Case study – Small anonymised system

- Small anonymised sewer system:
 - South-west England
 - Stormwater network
 - 105 houses on the network
 - 13.2 l/s discharge consent

00				
Cummulative depth (mm)				لم
lepth 49				ノ
9 30 <u> ×</u>		کہ `		
nulat 02	ب	J	/	12 hour
E				
5 10 5			1	4 hour
_			1	1 hour
0	0 10	20	30	40
,	0 10	20	30	40
	D	uration (hours)	

		Number of in-sewer flow controls	Number of plot flow controls
	No additional flow controls	0	0
	Only sewer flow controls	2	0
rio	Only plot flow controls	0	105
Scenario	Both plot & sewer flow controls	2	105

Case study – Large anonymised system

- Large anonymised sewer system:
 - North-west Scotland
 - Combined sewer system
 - 1,073 houses on the network
 - 22 l/s discharge consent
 - CSO in the centre of the system

60					
Cumulative depth (mm) 0 0 0 0 0				ر	اسر
40 tde			_		
9 30 9/		[
ulati\ 02	<i>!</i>	7	_	40	hour
E 10	1				
Q 10			••	•••• 31	
0			_	23	hour
0	0	10	20	30	40
		Dura	ation (ho	ours)	

		Number of in-sewer flow controls	Number of plot flow controls
	No additional flow controls	0	0
	Only sewer flow controls	8	0
	Only plot flow controls	0	1,073
Scenario	Both plot & sewer flow controls	8	1,073

Flood resistance analysis

 In both cases the plot-based flow controls reduced the risk of flooding.

• In both cases the Small anonymised sewer system:

	Rainfall hyetograph	42 hour	14 hour	11 hour	Minimum rainfall depth that caused system flooding (mm):
	No additional flow controls	73.2	33.9	17.7	17.7
<u>.e</u>	Only sewer flow controls	116.6	49.6	24.8	24.8
Scenario	Only plot flow controls	81.0	43.5	39.6	39.6
Sce	Both plot & sewer flow controls	81.0	55.6	39.6	39.6

 In the larger system, including both plot-based and sewer flow controls gave the greatest reduction.

system, including Large anonymised sewer system:

	Rainfall hyetograph	40 hour	31 hour	23 hour	Minimum rainfall depth that caused system flooding (mm):
1	Kaiiliali liyetograpii				
	No additional flow controls	6.2	5.4	6.9	5.4
_	Only cover flow controls	7.8	4.8	8.6	4.8
<u>.</u> 2	Only sewer flow controls	7.0	4.0	0.0	4.0
Scenario	Only plot flow controls	6.7	6.0	7.5	6.0
ē	Only plot now controls				
Sc	Both plot & sewer flow controls	8.8	6.9	9.9	6.9
	•				

Flood resilience analysis – Small system

- In-sewer flow controls reduced flood volume the most.
- With plot-based flow controls installed:
 - Flood volumes increased;
 - Number of flooded manholes increased;
 - Flood volume per flooded manhole decreased.

Small anonymised sewer system:

	Rainfall hyetograph Depth of rainfall applied (mm)	42 hour 261.3	14 hour 178.3	11 hour 88.7	Maximum flood volume predicted (m³):
	No additional flow controls	1,351	1,444	282	1,444
<u>.o</u>	Only sewer flow controls	613	1,004	5	1,004
Scenario	Only plot flow controls	1,690	1,590	630	1,690
Sc.	Both plot & sewer flow controls	1,340	1,198	630	1,340

	Rainfall hyetograph	42 hour	14 hour	11 hour	Maximum number of nodes that
	Depth of rainfall applied (mm)	261.3	178.3	88.7	flooded:
	No additional flow controls	7	2	2	7
Ö	Only sewer flow controls	9	6	3	9
Scenario	Only plot flow controls	14	15	13	15
Sce	Both plot & sewer flow controls	16	16	13	16

Flood resilience analysis – Large system

- In-sewer flow controls reduced flood volume the most.
- With plot-based flow controls installed:
 - Flood volumes increased;
 - Number of flooded manholes increased;
 - Flood volume per flooded manhole decreased.

Large anonymised sewer system:

	Rainfall hyetograph Depth of rainfall applied (mm)	40 hour 51.8	31 hour 29.9	23 hour 34.3	Maximum flood volume predicted (m³):
	No additional flow controls	3,034	1,276	2,022	3,034
<u>.</u> 0	Only sewer flow controls	1,858	1,070	816	1,858
Scenario	Only plot flow controls	2,940	1,192	1,731	2,940
Sce	Both plot & sewer flow controls	1,490	714	353	1,490

	Rainfall hyetograph Depth of rainfall applied (mm)	40 hour 51.8	31 hour 29.9	23 hour 34.3	Maximum number of nodes that flooded:
	1 11 ()	34	11	22	34
	No additional flow controls	34	11	22	34
S	Only sewer flow controls	38	19	27	38
Scenario	Only plot flow controls	53	8	8	53
Sc	Both plot & sewer flow controls	59	19	10	59

Conclusions

- By applying flow controls:
 - Flood risk reduced; and
 - Flood resilience is increased.
- By applying plot-based flow controls:
 - Flood risk reduced (+124% and +28% increase in the depth of rainfall, respectively).
- By applying both in-sewer and plot-based flow controls:
 - Flood resilience is increased as maximum flood volumes reduced.
 - However, the number of flooded nodes increased.

Conclusions

